02-03-2013, 23:14
|
|
|
חבר מתאריך: 13.11.04
הודעות: 16,823
|
|
סדרת כתבות על טילי ה C801/802/803 הסיניים - כולל אזכורים מעניינים של אירן וישראל
China’s Eagle Strike-Eight Anti-Ship Cruise Missiles: Designation Confusion and the Family Members from YJ-8 to YJ-8A
חלק ראשון
http://www.defensemedianetwork.com/...-yj-8-to-yj-8a/
חלק שני
http://www.defensemedianetwork.com/...yj-82-and-c802/
חלק שלישי
http://www.defensemedianetwork.com/...he-family-tree/
שימו לב להתקנה של טילי ב 6 משגרים חיצוניים על צוללת בודדת מדגם רומיאו. השיגור חייב עלייה על פני המים.
In the fall of 1983, the PLAN accepted delivery of a modified Type 033 Romeo class submarine with six external missile tubes for launching the YJ-8. The new Type 033G submarine began test-firing trials in 1985, and while the launch system appears to have functioned adequately, there was one fatal flaw that effectively ended further development – the submarine had to surface to fire. With a range of only 42 km (22.7 nm), the submarine would be highly susceptible to detection by radar and engaged before it could get all its missiles off. According to one Chinese article, the six missiles could be launched in six to seven minutes after the submarine had surfaced. That’s an uncomfortably long time for a submarine to be on the surface, exposed, that close to a hostile surface ship. A submerged launch option had to be developed to enable the submarine to remain stealthy until it was time to fire, as well as giving it a chance of escape after launching its attack.
ועל המעבר לשיגור ישירות מצמ"ט על בסיס REVERSE ENGINEERING של SUB-HARPOON מתנת הפקיסטנים
Pakistan is the most likely source of submarine-launched Harpoon technology that was transferred to China. The two nations were drawing closer to each other diplomatically and militarily due to their mutual concern over India, and the Pakistani Navy’s Agosta and Daphne class submarines had been modified to launch Sub-Harpoon missiles between 1984 and 1986. An additional motivating factor was China’s considerable technical assistance to Pakistan’s nuclear and ballistic missile programs. A quid pro quo arrangement for Chinese engineers to exam and/or dissect a Sub-Harpoon missile would not have been an outrageous request.
Western reporting put the first test firing of a YJ-82 in 1997 from the lead Song (Type 039) class submarine. Limited information suggests the initial flight tests didn’t go well. It wasn’t until 2004, at the Zhuhai Airshow China exposition, that the first photo of a model YJ-82 was seen in a CPMIEC brochure. The photo showed a YJ-8 type missile, without a booster, in an unpowered capsule that is an almost exact duplicate of the U.S. Sub-Harpoon system (see Figure 6). Subsequent Internet photos of encapsulated YJ-82 missiles are consistent with the brochure model, and the length of these capsules is virtually the same as the 6.1-meter submarine-launched encapsulated Harpoon missile. Photos of actual launches show a YJ-8 type missile, sans booster, rising from the ocean surface, very similar to submarine-launched Harpoon firings
זיהוי ראשון של טיל C-802 בידי האירנים - בתרגיל "ברק 4" בסוף נובמבר 1995
There are no known reports in the open press as to when the C802 began flight-testing. A review of news articles indicates the Iranians began receiving C801 missiles in 1993, and C802 missiles in late 1994 or early 1995, suggesting flight tests had to have been completed by 1993 or 1994. The first solid piece of evidence indicating the C802 had reached IOC was in late November 1995, when a C802 missile was launched during the Iranian Saeqa-4 (Thunderbolt-4) exercise.
לגבי YJ-83 / דגם היצוא של ה C802 (זהו אינו ה C803)
With a well-established airframe and mature propulsion plant already in place, the YJ-83 benefitted from an exceptionally short development timeline and began flight-testing in 1997. Apparently the missile passed through its trials quickly, as it was reported to have reached IOC in 1998. It was formally announced in October 1999 at the National Day Military Parade, and it has slowly worked up to become the dominant ASCM in the PLAN inventory (see Figure 9). The C802A export variant, shown in Figure 10, wasn’t displayed until the DSEi 2005 arms show in London, England. The seven-year delay was likely due to production limitations, and the more urgent need to replace YJ-8A missiles on the PLAN’s warships. The information presented by CPMIEC C802A brochures since 2005 go a long way toward defining the capabilities of the YJ-83 more accurately.
לגבי עיצוב הטיל - אינדקציה למהירות תת-קולית
From a drag perspective, the rounded blunt nose of the YJ-83 is highly inefficient for supersonic flight. Since the effects of the shock wave on the nose dominate supersonic drag, the missile’s overall drag coefficient is heavily influenced by the nose cap’s fineness ratio (length of the nose cap divided by its diameter). The YJ-83 nose has a rather low fineness ratio, thus its drag coefficient would be approximately twice that of a missile with a sharper, more pointed nose such as the one on the 3M-80 Moskit (SS-N-22) family at speeds between Mach 1.5 and 2.0. Higher drag requires more thrust to maintain speed and would dramatically increase fuel consumption, thereby greatly reducing the missile’s range.
Another related problem is the turbojet’s scoop inlet. It is a fixed geometry inlet that is by design optimized for a very narrow speed range. Operating away from that design point incurs a non-trivial loss in engine performance. Furthermore, the inlet face is completely flat, which would make it even less efficient at supersonic speeds as it lacks an upper diverter to isolate the inlet from shockwave interactions with the boundary layer near the missile’s body. Finally, the scoop inlet of the YJ-83/C802A is identical to that on the C802, and similar in design to the scoop inlet on the C602 and C705, all known to be subsonic missiles. All of these observable features strongly point to the inlet design being optimized for subsonic airflow.
שימו לב לאזכור המעניין הבא...
. In 1997, both Israel and the U.S. were well along with their respective Harpoon improvement programs. The U.S. Harpoon II under went its first test flight in 2001, while the Israeli Harpoon Extended Performance (HAP) program was completed around the same time. Both missiles included a full two-way data link and an integrated INS/GPS to improve targeting in littoral environments cluttered with civilian shipping.
|